Journal of Magnetic Resonanéd?2,280-287 (2000) ®
doi:10.1006/jmre.1999.1938, available online at http://www.idealibrary.co"I)E %I.

Analytical Polarization and Coherence Transfer Functions
for Three Dipolar Coupled Spins 3

Burkhard Luy* and Steffen J. Glasett

*Institut fir Organische Chemie, J. W. Goethe-Univéisitdarie-Curie-Strasse 11, D-60439 Frankfurt, Germany; amistitut fir Organische Chemie
und Biochemie, Technische Universitiinchen, Lichtenbergstrasse 4, D-85747 Garching, Germany

Received June 16, 1999; revised August 30, 1999

Analytical polarization and coherence transfer functions are 3

resented for a spin system consisting of three dipolar coupled _
Eomonuclear spinz i ur):der energy ma‘?ched conditigns. Baseg on Uo = 2m 2 Dy{2lilip — Ll — Iyl [
these transfer functions, optimal durations of Hartmann-Hahn
mixing periods can be determined for arbitrary dipolar coupling
constants Dy,, Dy, and Dy,. In addition, the dependence of the Here thez axis is the quantization axis. In analogy to the
transfer efficiency on the relative size of the dipolar coupling case of three coupled spins under planar mixing conditior
constants is illustrated.  © 2000 Academic Press (17), polarization transfer functions can be derived based ¢

Key Words: Hartmann—Hahn transfer; dipolar coupling; analyt-  {he eigenvalues and eigenfunctions #f,. The product
ical transfer functions; DCOSY.

i<j

TABLE 1
INTRODUCTION General Transfer Functions T,_g for A = 1,
Hartmann—Hahn transfer based on effective isotropic or s 3
planar coupling tensors is commonly used in high-resolution Ti-, =T =1— > > bwi{l - cosAn)}
NMR (1-3. For a number of simple spin systems, analytical s

solutions are known for coherence and polarization transfer
functions in isotropic 4-9 or planar mixing experiments
(5,10-17. Recently, Hanseret al. (18) introduced the s s
DCOSY experiment (dipolar coupling spectroscopy), whichis ¢ _ gz _ S Hwey — yy)? — (BB)HL — codA, )}
based on homonuclear Hartmann—Hahn transfer through resid- i1 joit1

ual dipolar couplings 19, 20 in high-resolution NMR. This 3 3

experiment makes it possible to transfer magnetization be- T, -1, = E 2 ${(Biy; — viBy)wysin(Ay7)

tween spins that are separated by even more than 7 A. Transfer i=1 j=i+1

functions of transverse and longitudinal magnetization are well 502

known for the simple two-spin systen3,(18. However, for Thaeisastsin) = E E 3 ey = viey)wylsin(A, 7)

more than two dipolar coupled spins, transfer functions are ':31 F;”

conS|derab_Iy more co_mpllc_ated a_nd could so far only be cal- Tt = S S 2 {(af; — By wylsin(A )

culated using numerical simulation21j. Here we present o

analytical transfer functions for the general case of three dipo- a3

lar coupled spins with arbitrary effective coupling constants. T, i.cimon = 20 2 3 {(Biy + aiBwiH1 — codAyn)}

i=1 j=i+1

T =Th= 2 > vy — BiB)? — (i) H1 — cog A7)}

i=1 j=i+1

3 3
THEORY
TI1Z~>{\21(I1XI3X+I1\/I3\/)) = E E %{(%’YJ + ’YIaj)le}{l - COunT)}

i=1 j=i+1

We consider a system consisting of three homonuclear spins s 3
3 with (effective) dipolar coupling constarily;. If the effective 1, = "~ N 14(y8 + Bry)wH1 - cosA;7)}
fields are zero, the Hamiltonian has the form i=1 j=i+1

Note.«a;, Bi, v: are defined in Egs. [7]-[10], and; = —aia; — BiB; +
! To whom correspondence should be addressed. E-mail: glaser@ch.tumysg.
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TABLE 2
General Transfer Functions T,_g for A = 1,

3 3 3 3

T = Ti= >, a?B?+1 > y’codAgr) +5 >, > vicodAyr)
i=1 i=1 i=1 j=i+1
3

3 3 3
Tty = T2 = E a?Biy + % E BiyicodAgT) + 3 E 2 vii(a;y; + o5yi)COL A7)

i=1 i=1 i=1 j=i+1
3

3 3 3
Tipots = Tiz = E By +3 E o;yiCogAgT) + 3 E 2 vii(Biy; + Bjyi)cod A7)

i=1 i=1 i=1 j=i+1

3 3 3
Tty = E Bivisin(AgT) + z z vi(aiy; — ojy)sin(A;7)
-1 =1 j=i+1

3

3 3
Tty = E yisin(AgT) + 2 E vii(iB; — a;Bi)sin(A;7)
i-1 =1 jei+l

3

3 3
Tty = E a;yiSin(AgT) + 2 z vi(Biv; — Bivi)sin(A;7)
i-1 =1 j=i+1

3

3 3
Ttz = E yEsin(AgT) — E E vii(aiB; — a;Bi)sin(A;7)
i=1 i=1 j=i+1

3

3 3
Tty = E a;yiSin(AgT) — E z vi(Biy; — Bjvi)Sin(Aj)

i=1 =1 j=i+1

3 3 3
Tiptny = E Biyisin(AgT) — E z vi(ay; — o5y)Sin(AjT)

i=1 =1 j=i+1

Tllx*>|1x|2y|3y =2 2 O‘lﬁl(("iz + Blz - 'le) +2 z Z Vu(alal + BIBJ - 'Yl'YJ)COsAuT)

i=1 =1 j=i+1

T|1x~>|2xl1ylay =2 z (X|B,(Oli2 - BIZ + 'le) +2 2 z V”(OQOLI - BIBJ + 'Y,'YJ)COiAU’T)

i=1 i=1 j=i+1

3 3 3
Titadyly = 2 2 aBi(—af + BF+ yD) + 2 z 2 vi(—ajoy + Bify + viy;) CoLAyT)

i=1 i=1 j=i+1

3 3 3 3
Tivotnions = —4 2 afpf+2 E yicodAgT) — 2 E E VﬁCOS(AijT)

i=1 i=1 =1 j=i+1

3 3 3 3
Tiotnims = —4 2 alBivi+ 2 E BivicogAgT) — 2 E E vi(ay; + ajy)cogA;7)

i=1 i=1 i=1 j=it1

3 3 3 3
Tioisi, = —4 E aiflyi+ 2 E @;¥;COg A7) — 2 E E vii(Biy; + Bjyi)cog A7)

i=1 i=1 i=1 j=i+1

Note.«a;, Bi, v; are defined in Egs. [7]-[10], and; = («iB; + o;B)).

functions |aaa) (with magnetic quantum numben = 3), magnetic quantum numbens. Form = 3 andm = —3$, the
|Baa), |aBa), |aaB) (with m = 3), |aBB), |BaB), |BBa) resulting blocks are identical X 1 matrices:

(with m = —3), and|BBB) (with m = —32) form a conve-
nient set of basis functions. In this basis the matrix repre-
sentation of#, assumes a simple block structure because
7, commutes withF, = 1, + |,, + |5, Nonzero matrix
elements exist only between basis functions with identickbrm = 3 andm = —3%, the blocks are identical & 3 matrices

%(03/2) = %(073/2) = m(Dy, + Di3+ Dyy) = Ao [2]
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TABLE 3

Simplified Transfer Functions T = T,,.,,, for Special Case 1
(D, = Dy = Dy/2 = D) with & = z or x

5 1
Tii= g+ g cos2 /67D

! coq2 rﬂ'DT)

1
Te=Th=15"13
-

6
cog(2 + /6)wD 1)

11 1 3 +

24 24 coy2 l6mD1) +
3-6

+ 12 coq(2 —

z _ T2
T22 - T33

\,'%) D7)

6
12

o111
T23:ﬂ+ﬁcoi2\/é7TD’T) -

s

coq(2 + \,/6) 7D7)

cod(2 — /6) 7D )

111 3-6
Tii= 54+ 57 cod2 \J6mD7) + 1o cos(6+ J6)7D1)

-6

T

cog(6 — \,@)WDT)
TS, =T = t 1 2.\/67D ! 6 +/6)wD
12~ 13—E_EC05( \/>7T T)"’mcos{( +/6)7DT)

! 6 — \6)7D
fﬁcos(( *\)'Tr T)

. 1 1 = 1
T3 = 12 + = COiZ \67D7) + 1 cog4nDT)

<; a F)COS((6+ l6)7D7)
1

+
(8 G
1 1
8
(8
1

1
1

L -
T227

)COS((G* [6) 7D )
2 6)cos{(2+\[woﬂ
2 \/7)cos((2 \/6)7D1)
1

T3 = 12 6 cog2 [6nD7) — = COi47‘rDT)

3+.6
24

26

3-./6
cog(6 + \/6)7D7) + ‘ cog(6 —

\/6) 7D7)

/,
cog(2 + @)’n’DT) 6 cog(2 — \/%)’JTDT)

4

S, Di; Dy
HFD=¢5Y) = —7| D, S, Dag, [3]
Diz Dz S

with

S = Djj + Dix — Dy« (4]
for {ijk} = {123}, {231} and {312} and D; = D;.
The eigenvalues of the 8 3 matrix of Eq. [3] are given by

LUY AND GLASER

)\0 o 'TTW
Aog=—% F 5, [5]
with
3 3
wW? = Z 9Dﬁ - E 6DijDika [6]

i<j i=1
where in the second summatioijK} = {123}, {231}, and
{312}.

For each of the eigenvalues, (i = 1, 2, or 3), the
corresponding normalized eigenvectors are given &y £,
vi) = (ai, Bi, vi)/n; with the normalization constants

= V(@) ®+ (B)*+ (v))? [7]
TABLE 4

Simplified Transfer Functions Tg = T,,,.,, for Special Case 2
(Dy, = D33 = D and D,; = 0) with @ = z or X

, 42 A
T11:€+60012\,37TDT)
z z 1 T
T12=T13=g—gcos(2\y37TDT)
5 1 3-3
T3 = Ths= 15+ 15 €042 (37D7) + 55— cog(1 + {3)7D7)
r 8
15 cos(l—\3)7D7)
, 5 1 B 3-8
Tis= 15+ 15 €04237D7) — —5—cod(1 + \/3)nD7)
3
N
12 cos((l—\@)war)
.5 1 3+3
Th =15+ 15 C04237D7) + — 5 cod(3 + 3)mD1)
3-6
+ =15 cos(3~ \3)7D7)
‘ _ x 1.1 1 3
Ti=Ti= = 15+ 15 C042 37D7) + 53 C0d(3 +3)7D7)
.
5 /—COS((S \3)mD1)
X X 1 1 1
TS, =Th= 3 + 12 cog2 \/§7TDT) + 1 cog2wD7)
3-3 1 1
15 =
+ 32 C05((3+\,3)77D7)+<8+4 3)005{ - \/3)7D7)
(1 +\3)mD7) + L L ) eos(1 - Bm0n
4/700 T) 84FCO — \/9)TDT,
L1
Ths= 6 12 COS(Z \fﬂ'DT) - = COS(ZWDT)
-3 = 3+.3 =
+ 24 cod(3 +43)wD7) + 24 cog(3 — 3)wD7)
3+.3 3
- Z\fcos((lﬂf)wm) cog(1 — \3)7D7)
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and TABLE 5
Polarization and Coherence Transfer Functions T,_g for Special

a) = Dys— Dys Case 3 (D, = Dy3 = Dy = D) with A = 1, or Iy,
r_ 2 10 8
Qo3 = —3(Dy, — D23) — 2D1;D53 + DyoDy5 T, =Ti= 18 + 18 cog3wD7)
+ D13D23 * (D12 - DZS)W [8] 8 3
— Z _— _ ein?| _
B’l = Dy, — Dy, T, =Th = 18 sin (2 WDT)
2
B53= —3(Di3— D23)® — 2D13D,3 + Dy,D13 Tiattae-toiy) = ~ 3 SINETOT)
T||z~>{|1x|ky*|kx|]y} =0
+ D12D23 * (D13_ DZS)W [9] 16 3
v1 =Dy, — Dys Tttt iyt = = 9 sin2<§ wDT)
: = s 2 o)
Y23 = 4D1,D15 = 2D 1,053 — 2D 13Dy, [10] el i) = g SIT 3 70T
7 8 1
. . . T = T1 = 75+ 75 co43wD7) + < cog67D7)
Equations [8]-[10] represent the eigenvector components in all 18 18 6
cases where the eigenvalues (Eq. [5]) are nondegenerate, i.e., if 1 4 1
; T =Th ==~ = cog37D7) + = cog6mD
A # Ao Ay # Ag, @andA, # A, Based on the eigenvectors of ! <= 15 1 c0d37D7) + g cosbmDT)
the subblocks (Egs. [2] and [3]), an orthonormal eigenbasis 1 6
{1, ... s} Of the full mixing Hamiltonian %, can be con Thuta, = 3 SIN6TDT)
structed 2 1
Tiotyhe = 3 sin(3wD7) + 3 sin(67DT)
= |laaa 2 1
b1 = |aaa) Tty = — 5 SIN37D) + 3 sin(6mD7)
U = ag|Baa) + BilaBa) + yi|aaB) 8 8
Thxﬁhxwky = — § + § COiS’TTDT)
Y3 = a2|Baoz> + 32|O‘Ba> + 72|0‘0‘B> 14 8 2
Tl = — 9 + 9 cog3nDT) + 3 cog67DT)
Uy = aglBaa) + BilaBa) + vilaap)
8 3
Tt =fsin2<f D )
s = aslaBB) + Bi BaB) + i BBx) by g PR 2T
2 4 2
Tholpiple = — g — g €0437D7) + 5 cod67DT)

9 9 3

s = aslaBB) + Ba|Bap) + vi|BBa)
U7 = azlaBB) + B3| BaP) + vi| BBa)

s = |BBB). [11] terestwe were able to derive compact analytical solutions wi
the help of the algebraic programathematica(22).

In this eigenbasis, coherence and polarization transfer funcFor the initial termA = I, all transfer functions can be

tions expressed as a constant term and three harmonic terms with
oscillation frequencied,, A,;, andA,; which correspond to
TrHB'(r) AU (1)} differences of the eigenvalues, A, and A; (cf. Eq. [5]):
Tacel?) = = 111g7g) [12]

Ap=Ar— A= —Ay,

between two operato’s andB can be calculated conveniently Ais= A — As= —As,
because the propagator
Ayz= Ay, — A3 = —7W. [14]
U(7) = exp[—i#K T} [13]

For A = |, the set of all nonzero polarization and coherenc
is diagonal with the nonzero matrix elements) (; = (U)g =  transfer functionsT ,_s is summarized in Table 1.
exp{—iXo7}, (U)ze = (U)ss = exp{—ili7}, (U)sz = For initial magnetizatior in the transverse plane (e.4\.=
(U)es = exp{—ir,7}and (U),, = (U),; = exp{—iAs7}. For 1)), additional harmonic terms arise with oscillation frequen
coherence and polarization transfer functions of practical inies
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FIG. 1. Polarization transfer functiony = T,,,_.,, andTg = T,,,_,, (Table 1) for three dipolar coupled spins with coupling consténgs= —10 Hz,
D,; = 4.6 Hz, andD,; = 11 Hz.

1 Wlth D12 =
D andD,;

D13 = D23/2 = D, case 2 WItI’DlZ = D13 =
0, and case 3 witlD,, = D,; = D,; = D.

Ao1 = Ao — Ay = Ay,

Aoz = )\0 - )\2 = {3)\0 + WW}/Z,

Ags= Ao — A3 = {31y — "W}/ 2, [15] TRANSFER EFFICIENCY
which correspond to differences of the eigenvalue§¢gf"? In Figs. 1 and 2, representative transfer functions are shov
and %52 (cf. Egs. [2] and [3]). The set of all nonzerofor the general case of three dipolar coupled spins withot
polarization and coherence transfer functidns.; with A = permutation symmetry. The analytical transfer functions ar
I, are summarized in Table RDue to the invariance of the identical to simulated transfer functions that were calculate
dipolar coupling Hamiltonian (Eq. [1]) with respect zarota- numerically using the program package SIMONE)((data
tions, these transfer functions are also valid if both operatoranot shown). Dipolar coupling constarils, = —10 Hz,D ; =
andB are rotated by an arbitrary angle around thexis. For 4.6 Hz, andD,; = 11 Hz were chosen to match the coupling
example, the transfer functioil,,_,,,(7) is identical to constants for which transfer functions have been present
Tiyominnd™) = = Tiyminnd(7)- previously for isotropic 7) and planar 17) mixing conditions.
The general transfer functions between three dipolar coupl€lis allows for a direct comparison of the markedly differen
spins (Tables 1 and 2) can be significantly simplified fdransfer dynamics in a dipolar coupled spin system versi
symmetric spin systems. Tables 3, 4, and 5 summarize trans§atropically or planar coupled spins. For this particular set c
functions of interest for the following three special cases: caseupling constants, the dipolar transfer ofagnetization is
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FIG. 2. Coherence transfer functiol§x = T,,,_i, and Ty = T, (Table 2) for three dipolar coupled spins with coupling consténts= —10 Hz,
D,; = 4.6 Hz, andD,; = 11 Hz.

most efficient between spins 1 and 2 (Fig. 1D), whereas vemheresis 1 (or—1) if T,,.,,.(Tmad IS pOSitive (or negative) at
little magnetization is transferred between spins 1 and 3 (Fihe mixing timer,,., where|T,,._,.(7)|exp(— 7|Dy|) assumes
1F). This is in contrast to the case of planar mixing, where tl maximum value. Equation [16] is a straightforward gener
most efficient transfer is found between spins 1 and 3 and tzation of the original definition of the direct transfer effi-
transfer between spins 1 and 2 is the least effici@d}. (A ciency @, 24 to include the case of negative transfer functions
comparison of Figs. 1 and 2 shows that for some spin pairs tii’fﬁFigs. 3 and 4n?, and 7, are shown as a function of the
transfer. ofz.magnetiz'ation can be superior to the transfex of re|ative dipolar coupling constan®,;5/D,, and D,4/D1,. As
magnetization (cf. Figs. 1D and 2D) while for others thgye gipolar coupling Hamiltonian of Eq. [1] is invariant under
transfer ofx magnetization is more efficient (cf. Figs. 1E anq rotations,n’, = n’%. The most efficient transfer o mag
2E). . . hetization between spins 1 and 2 is foun®if, ~ D,; > 3D,

A global picture of the dependence of the transfer efﬂmencz% if D,s ~ Dy, < Dy, (cf. Fig. 3). In particular, the transfer

on the relative size of the coupling constabts, D ,;, andD ,, ?etween spins 1 and 2 is quenchedDif, and D,; have

can be obtained with the help of a quality factor that reflecosBposite signs anD .| ~ |Dys| > |Dyyl. This is the case for

both the transfer time and the transfer amplitude between t‘fY’le transfer shown in Fig. 1E if the spin labels are permute

operatorsl,, andl,,. Such a quality factor is the so-called . ) o .
direct transfer efficiency, defined as such that two spins between which polarization transfer |

considered are labeled 1 and 2. As can be seen in Fig. 3, th
nig = s max|T, . (7)|exp(—7[Dy])}, [16] @are many other combinations of coupling constants for whic
>0 polarization transfer between two spins can be very weak ev
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if large dipolar couplings exist between these spins. This 5
finding will be important for the correct interpretation of ex-
perimental DCOSY spectra. A more complex dependence laéle12
the size and sign of the direct transfer efficiency is found for

the transfer ofx magnetization (cf. Fig. 4). As expected, the 2.5
transfer efficiency can be either positive or negative. Note that

in contrast to the transfer afmagnetization, significant trans-

fer of x magnetization occurs iD,; and D,; have opposite

signs andD ;| =~ |D,3 > |D,,|. Hence, in some cases, the 0
guenching of polarization transfer can be circumvented by
transferring x rather thanz magnetization. Corresponding

transfer efficiency maps with a significantly different depen-

dence on the relative size of the coupling constants have been _o g
published previously for the case of isotropic and planar mix-

ing (3, 29.

DISCUSSION -5

-5 -2.5 0 2.5 5

Coherence and polarization transfer functions were derived D../D
for a general spin system consisting of three dipolar coupled 13"12

spins with the Hamiltonian given in Eq. [1]. In the mixing FIG. 4. Coherence transfer efficiency mag, (Eq. [16]) as a function of

period of DCOSY experimentsl®), WALTZ-16 (25), and the relative dipolar coupling constars./D, and D,s/D.,. Regions where
DIPSI-2 26) sequences can be used in order to create enefgy < 0.1 are black. Positive and negative contour levels are drawn as sol

matched conditions. Similar to CWirradiation, these se and dashed lines. The level increment is 0.1.

guences create effective coupling terms that have the form of

Eqg. [1]. However, the unique axis of quantization is changed

from z to x and the coupling constants are scaled by a factor of ACKNOWLEDGMENTS

—3(27). Hence, the derived analytical solutions are also valid_

for the transfer under these mixing sequences if the axis labgiFI8 8 2 SRR Y 0 T2 O TR K e ana

{ x,y, z} are replaced by §, z, X} and if the dipolar coupling Sonderforschungsbereich 472. S.J.G. thanks the DFG for a Heisenberg Stip

constantsD,, are replaced by, s = —Dy/2. A detailed dium (Gl 203/2-2) and the Fonds der Chemischen Industrie for support.
analysis of the offset dependence of the effective Hamiltonian
created by DCOSY sequences is given 28)( REFERENCES
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